

Available online at www.sciencedirect.com

ICARUS

Icarus 179 (2005) 527-534

www.elsevier.com/locate/icarus

Near-infrared laboratory spectra of solid H₂O/CO₂ and CH₃OH/CO₂ ice mixtures

Max P. Bernstein*, Dale P. Cruikshank, Scott A. Sandford

NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035, USA Received 4 February 2005; revised 6 June 2005 Available online 12 September 2005

Abstract

We present near-IR spectra of solid CO₂ in H₂O and CH₃OH, and find they are significantly different from that of pure solid CO₂. Peaks not present in either pure H₂O or pure CO₂ spectra become evident when the two are mixed. First, the putative theoretically forbidden CO₂ (2 ν_3) overtone near 2.134 µm (4685 cm⁻¹), that is absent from our spectrum of pure solid CO₂, is prominent in the spectra of H₂O/CO₂ = 5 and 25 mixtures. Second, a 2.74-µm (3650 cm⁻¹) dangling OH feature of H₂O (and a potentially related peak at 1.89 µm) appear in the spectra of CO₂–H₂O ice mixtures, but are probably not diagnostic of the presence of CO₂. Other CO₂ peaks display shifts in position and increased width because of intermolecular interactions with H₂O. Warming causes some peak positions and profiles in the spectrum of a H₂O/CO₂ = 5 mixture to take on the appearance of pure CO₂. Absolute strengths for absorptions of CO₂ in solid H₂O are estimated. Similar results are observed for CO₂ in solid CH₃OH. Since the CO₂ (2 ν_3) overtone near 2.134 µm (4685 cm⁻¹) is not present in pure CO₂ but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO₂ is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies. Published by Elsevier Inc.

Keywords: Ices, infrared observations; Spectroscopy; Surfaces, planets, satellites

1. Introduction

Near-infrared (IR) reflection spectra of outer Solar System objects show that CO_2 occurs on the solid surfaces of several bodies in the Solar System. In addition to the seasonal deposits of solid CO_2 on Mars, carbon dioxide in the comae of some comets is presumed to evaporate from solid CO_2 in their nuclei; comets also contain CH_3OH (Mumma et al., 1993). Grundy et al. (2003) found three bands of solid CO_2 in the 2-µm region in the spectrum of the uranian satellite Ariel. Carbon dioxide is also seen in the reflectance spectra of Jupiter's satellites Europa, Ganymede, and Callisto (McCord et al., 1997, 1998; Hibbits et al., 2000, 2003) and Saturn's satellites Phoebe (Clark et al., 2005) and Iapetus (Buratti et al., 2005). In all of these cases,

* Corresponding author. E-mail address: mbernstein@mail.arc.nasa.gov (M.P. Bernstein). the CO_2 stretching fundamental band usually at 4.27 µm is shifted slightly to shorter wavelength (4.26 µm) and is presumed to originate from CO_2 that is complexed in some way with other surface materials. The occurrence of CO_2 in the form of fluid or gaseous inclusions in minerals has been suggested by the authors of the papers cited above.

On Triton, an environment that is dominated by N₂ (Cruikshank et al., 1993; Stansberry, 2004), CO₂ might have been frozen into an inert matrix of solid N₂, but lab experiments have shown that the IR absorptions (especially the $4\nu_2 + \nu_3$ band) are more consistent with pure CO₂ (Quirico et al., 1999) than CO₂ in N₂ (Quirico and Schmitt, 1997). Even if they were originally mixed, presumably seasonal temperature cycling and surface–atmosphere exchange has caused the ice components to separate on Triton and Pluto (e.g., Grundy and Buie, 2001) and on Mars (Bibring et al., 2004). The IR spectrum of pure solid CO₂ has been well studied (Hansen, 1997; Quirico and Schmitt, 1997; Gerakines et al., 2005) and modeled (Bini et al., 1991), so it is well understood.

Solid H₂O is ubiquitous in the outer Solar System (Roush, 2001), and it is inevitable that CO_2 will come into intimate contact with H₂O at various temperatures and in varied proportions. For example, reflectance spectra of icy Galilean and saturnian satellites show strong near-IR absorptions of H₂O and CO₂. Although good near-IR spectra of pure CO₂ and CO₂ in N₂ have been published (Hansen, 1997; Quirico and Schmitt, 1997; Gerakines et al., 2005), to our knowledge no near-IR spectra of CO₂ in H₂O are available. The interaction between CO₂ and H₂O (and CH₃OH) on a molecular level has been shown to cause significant changes in the position and profile of CO₂ peaks in the mid-IR (Sandford and Allamandola, 1990; Dartois et al., 1999; Ehrenfreund et al., 1999; Palumbo and Baratta, 2000), so it seems reasonable that the presence of H₂O could change near-IR CO₂ peaks as well. Indeed, in this paper we show that this is the case, especially for the classically 'forbidden' $2\nu_3$ overtone near 2.134 µm.

The coincidence of CO_2 and CH_3OH in spectra of comets shows that these molecules coexist in the ices of the nucleus, but it is unknown if they occur as a molecular mix or in some other configuration. Both CH_3OH and H_2O ices have been found on the Centaur object 5145 Pholus (Cruikshank et al., 1998), thought to be a former Kuiper belt object and therefore a large 'proto-comet,' but CO_2 has not yet been detected.

In this paper we display near-IR spectra of H_2O-CO_2 and CH_3OH-CO_2 ice mixtures at temperatures from 15 to 150 K. Among other things we highlight the enhancement of the probable $2\nu_3$ overtone of CO_2 near 2.134 µm (4685 cm⁻¹), and its potential as an observational (spectral) indicator of whether solid CO_2 is a pure material or intimately mixed with other molecules. We present these results in Section 3, and briefly discuss the results and potential implications for Solar System studies in Section 4.

2. Materials and methods

The basic techniques and equipment employed for this study have been described previously as part of our mid-IR studies of various compounds in H_2O at low temperature (Hudgins et al., 1994). Details associated with the materials and methods used that are unique to this particular study are provided below.

The H₂O (purified via a Millipore Milli-Q water system to 18.2 M Ω) and the CH₃OH (99.93% HPLC grade, Aldrich) were freeze-pump thawed at least three times to remove dissolved gases prior to use. CO₂ (bone dry, Matheson) was used without further purification. Samples were mixed at room temperature in volume-calibrated, greaseless glass bulbs and allowed to equilibrate for at least 24 h be-

fore use. The background pressure in the gas-handling system was $\sim 10^{-5}$ mbar, compared to total pressures in the sample bulbs of tens of millibars, so the contaminant levels in the bulbs associated with the mixing process were negligible. Bulbs containing H₂O/CO₂ = 5 and 25, and CH₃OH/CO₂ = 5 mixtures were used to prepare the samples.

Once prepared, glass sample bulbs were transferred to the stainless steel vacuum manifold where the sample mixture was vapor-deposited onto a CsI window cooled to 15 K by an Air Products Displex CSW 202 closed-cycle helium refrigerator. Gas mixtures were deposited first for 10 min against a cold shield before depositing onto the sample window so as to minimize the bias in the ice towards the more volatile component early in the deposit. We find that this procedure gives a solid sample more representative of the gas phase mixing ratio in the bulb, but presumably also depends on the components and the substrate temperature.

Typical samples were deposited at a rate sufficient to produce samples $\sim 0.1 \,\mu$ m thick after a few minutes. The spectra that include the mid-IR (Figs. 1 and 7) are only tenths of micrometers thick, whereas the others are $\sim 10 \,\mu$ m thick. Under these conditions the samples are composed of an intimate mixture of the CO₂ in H₂O or CH₃OH. Pure H₂O deposited under these conditions is in its high density amorphous form when deposited at 15 K and after warming, the H₂O goes through several phase transitions (Jenniskens and Blake, 1994; Jenniskens et al., 1995). Clearly, the situation for mixtures is more complex. We do not know the phase of the H₂O in these mixtures but our IR spectra of H₂O/CO₂ mixtures are broadly consistent with previous observations of phases of pure H₂O.

In Table 1, we report relative areas for the absorptions of CO₂ in H₂O and CH₃OH because we have no accurate absolute scale against which to compare the peak areas. However, we can give an estimate of the intrinsic (absolute) absorptivities for these absorptions of CO₂ in solid H₂O given certain assumptions. If we assume that the intrinsic strength of the 4.270 µm (2342 cm⁻¹) ν_3 , fundamental asymmetric stretch of CO₂ in the spectrum of the H₂O/CO₂ = 25 ice is the same as that of an H₂O/CO₂ = 20 mixture, then it should be $\sim 2 \times 10^{-16}$ cm/molec according to Sandford and Allamandola (1990). Since the numbers on Table 1 are normalized to the ν_3 band, the relative numbers in Table 1 (at least for the H₂O/CO₂ = 25 ice) can be converted to intrinsic per-molecule absorptivities (A values) by multiplying by $\sim 2 \times 10^{-16}$ cm/molec.

The intensity of the 2.135 μ m (4700 cm⁻¹) 'forbidden' $2\nu_3$ overtone of CO₂ in H₂O or CH₃OH is sensitive to conditions (i.e., concentration, temperature); we have observed it to vary in strength by as much as a factor of two in CO₂–CH₃OH mixtures. As a result, the areas reported for the 2.135 μ m (4700 cm⁻¹) absorptions should be regarded as more uncertain than those of the other CO₂ absorptions.

Table 1	
Peak areas for solid CO ₂	in H ₂ O and CH ₃ OH at 15 K

Mode ^a	$H_2O/CO_2 = 25$			$H_2O/CO_2 = 5$			$CH_3OH/CO_2 = 5$		
	Position (cm ⁻¹)	FWHM (cm ⁻¹)	Area ^b	Position (cm ⁻¹)	FWHM (cm ⁻¹)	Area ^b	Position (cm ⁻¹)	FWHM (cm ⁻¹)	Area ^b
$2v_1 + v_3$	_	_	_	5083	10	6.3×10^{-5}	5071	18	1.2×10^{-4}
$v_1 + 2v_2 + v_3$	4960	>10	$\sim 6 \times 10^{-4}$	4962	15	1.7×10^{-4}	4950	14	1.8×10^{-4}
$4v_2 + v_3$	_	_	_	4827	_	1.1×10^{-5}	4847	_	$\sim 1 \times 10^{-5}$
$2\nu_3$	4685	27	0.012	4678	40	0.016	4680	20	0.015
$v_1 + v_3$	3700	12	0.013	3702	12	8.4×10^{-3}	3697	11	0.014
-	3650 ^c	20	6.4×10^{-3}	3653°	32	0.048	3627 ^c	16	0.0022
$2v_2 + v_3$	_	_	_	3592	11	1.3×10^{-3} d	3584	15	3.6×10^{-3}
v3	2342	11	1.0	2341	22	1.0	2339	18	1.0
$^{13}C - \nu_3$	2278	8	0.010	2279	8	0.010	2275	6	0.010
v ₂	653	21	0.15	654	20	0.21	646	31	0.18

^a Mode assignments from Quirico and Schmitt (1997) and Sandford and Allamandola (1990).

^b Peak areas are normalized to the CO₂ peak near 2340 cm⁻¹ (4.274 μ m). The relative numbers can be converted to absolute values by multiplying by $\sim 2 \times 10^{-16}$ cm/molec (see Section 2).

^c These are not CO₂ peaks, they are probably caused by H₂O (or CH₃OH).

^d This area probably represents a lower limit, this peak is difficult to integrate accurately because of its proximity to the 3 µm OH band of H₂O.

3. Results

Fig. 1 displays a full $(1.75-22 \ \mu m; 5700-450 \ cm^{-1})$ IR spectrum of an $H_2O/CO_2 = 5$ mixture at 15 K. The broad strong absorptions at \sim 2.0, 3.1, 6.3, and 13.3 µm $(5090, 3250, 1600, \text{ and } 750 \text{ cm}^{-1})$ are typical of those observed previously for pure amorphous solid H₂O (Hudgins et al., 1994; Gerakines et al., 2005). Solid H₂O is also responsible for the sharper, weaker, features near 1.89 µm (5300 cm^{-1}) and 2.74 µm (3650 cm⁻¹), see discussion for details. The sharp mid-IR peaks of CO₂ in solid H₂O appear at 15.3 μm (654 cm^{-1}), 4.39 μm (2278 cm^{-1}), and 4.270 μm (2342 cm^{-1}) , and these have been well studied (Sandford and Allamandola, 1990; Dartois et al., 1999). The shorter wavelength, less intense, (near) IR absorptions of CO₂ in solid H₂O are at 2.701, 2.784, 2.135, 2.072, 2.015, and 1.967 μ m (3592, 3702, 4678, 4827, 4962, and 5083 cm⁻¹). Table 1 lists the peak positions, full widths at half maximum height (FWHM) and relative areas of all observed absorptions of CO_2 .

The CO₂ absorption at 4.270 µm (2342 cm⁻¹) that dominates the mid-IR and Fig. 1 corresponds to v_3 , the asymmetric stretch of CO₂. We believe that the peak at 2.135 µm (4684 cm⁻¹) is $2v_3$, the theoretically 'forbidden' first overtone of the asymmetric stretch of CO₂ (see inset in Fig. 1). Because we have not performed isotopic studies, this assignment is based merely on the fact that it appears at twice the frequency of v_3 and behaves in a manner consistent with it being a 'forbidden' feature, i.e., this peak is absent from or very much weaker in spectra of pure solid CO₂ (see below).

Below we present a series of figures highlighting spectral regions of particular interest. The figures in this paper show primarily spectra of $H_2O/CO_2 = 5$ mixtures because these display the CO₂ absorptions with better signal-to-noise, but

Fig. 1. The 1.75–22 μ m (5700–450 cm⁻¹) IR spectrum of an H₂O/CO₂ = 5 ice mixture at 15 K. In addition to the broad absorptions of amorphous solid H₂O and the sharper CO₂ fundamentals one sees the 'forbidden' 2 ν_3 overtone of CO₂ at 2.135 μ m (4684 cm⁻¹). This feature is prominent in spectra of mixtures but is not seen in spectra of pure CO₂ (see Fig. 3).

the positions and widths are representative of what is seen for $H_2O/CO_2 = 25$ (see table for details).

Fig. 2 shows 2.667–2.817 µm (3750–3550 cm⁻¹) IR spectrum of pure CO₂ (top trace) compared with that of an H₂O/CO₂ = 5 ice mixture at 15 K. The two peaks at 2.701 and 2.784 µm (3702 and 3592 cm⁻¹) can be attributed to the $v_1 + v_3$ and $2v_2 + v_3$ combination modes of CO₂, respectively (Sandford and Allamandola, 1990; Quirico and Schmitt, 1997).

These absorptions of CO_2 in solid H_2O are 4–5 times broader and shifted by 0.005 and 0.006 µm (-7 and -8 cm⁻¹), respectively, relative to pure solid CO_2 under the same conditions. The central broad absorption near 2.74 µm

Fig. 2. The 2.667–2.817 μ m (3750–3550 cm⁻¹) IR spectrum of pure CO₂ (above) compared with that of an H₂O/CO₂ = 5 ice mixture at 15 K (below). The ~2.70 and 2.78 μ m (3702 and 3592 cm⁻¹) absorptions of CO₂ in H₂O are significantly broader and shifted to longer wavelength than those of pure CO₂. The central broad feature near 2.74 μ m (3650 cm⁻¹) is an absorption of H₂O, not CO₂, so it does not appear in the upper spectrum. The lower spectrum drops off to the right because of the large 3 μ m H₂O band (see Fig. 1).

(3650 cm⁻¹) is very similar to that assigned by Rowland et al. (1991) to the 'dangling' OH of H_2O and discussed in an astrophysical context by Ehrenfreund et al. (1996). This feature is observed when any molecule mixed into solid H_2O breaks up its hydrogen bonding network. Thus, it is not specific to CO_2 .

Fig. 3 highlights the $2\nu_3$ 'forbidden' overtone of CO₂ at 2.135 µm (4684 cm⁻¹) previously seen in the inset in Fig. 1. In this figure the 2.08–2.27 µm (4800–4400 cm⁻¹) IR spectra of H₂O/CO₂ = 5 and = 25, CH₃OH/CO₂ = 5, and H₂O:CH₃OH:CO₂ =100:2.5:1 mixtures are compared to those of pure CO₂ and pure H₂O under the same conditions. The $2\nu_3$ overtone of the asymmetric stretch of CO₂ near 2.135 µm (4684 cm⁻¹) is present in all of the ice mixtures, but it is too weak to be observed in the spectrum of pure CO₂ (above), although there are at least 100 times more CO₂ molecules in the sample that produced the upper trace than in the lower ones.

There are three sharp peaks in the spectrum of pure CO₂ at 2.072, 2.015, and 1.967 μ m (4827, 4962, and 5083 cm⁻¹) (Hansen, 1997; Quirico and Schmitt, 1997; Gerakines et al., 2005), as can be seen in the upper trace in Fig. 4. Compared to pure CO₂ these absorptions from the mixture are 3–5 times broader and shifted to longer wavelength by 0.002, 0.004, and 0.003 μ m (6, 10, and 5 cm⁻¹), respectively. This is comparable to the broadening and shifting of the 2.70 and 2.78 μ m (3702 and 3593 cm⁻¹) CO₂ peaks in Fig. 2. This entire region of the spectrum is spanned by a broad H₂O band (see also Fig. 1), and this causes a broad dip in the spectra of H₂O–CO₂ mixtures that somewhat obscures these CO₂ peaks.

Fig. 3. The 2.08–2.27 μ m (4800–4400 cm⁻¹) IR spectra of pure CO₂ and H₂O compared with those of various H₂O, CH₃OH, and CO₂ containing ice mixtures at 15 K. The 2 ν ₃ overtone of the asymmetric stretch of CO₂ near 2.135 μ m (4684 cm⁻¹) is absent from the spectra of pure CO₂ and pure H₂O, but present in the spectra of the CO₂ mixed with H₂O and/or CH₃OH. The position and profile of this overtone is sensitive to ice composition and concentration, not unusual behavior for a classically 'forbidden' feature. The baselines of the spectra rich H₂O in drop off to the left because of the 2 μ m H₂O band (see Fig. 1).

Fig. 4. The 1.908–2.105 μ m (5240–4750 cm⁻¹) IR spectrum of pure CO₂ (above) compared with that of an H₂O/CO₂ = 5 ice mixture (below) at 15 K. The large broad dip crossing the entire lower trace is caused by H₂O. The smaller peaks at ~1.97, 2.01, and 2.07 μ m (5083, 4963, and 4827 cm⁻¹) are from CO₂ in H₂O. Compared to pure CO₂ these absorptions from the mixture are significantly broader and shifted to longer wavelength.

Fig. 5 shows the temperature dependence of the 2.70 and 2.78 μ m (3702 and 3593 cm⁻¹) absorptions of a H₂O/CO₂ = 5 ice between 15 and 100 K. Sharp peaks con-

Fig. 5. Temperature dependence of the 2.67–2.82 μ m (3750–3550 cm⁻¹) IR spectrum of an H₂O/CO₂ = 5 ice mixture. The broad features at ~2.70 and 2.79 μ m (3700 and 3590 cm⁻¹) of CO₂ in H₂O are visible over the entire temperature range. The sharper peaks superimposed upon them that appear, broaden, and then diminish with warming are similar to those produced by pure CO₂.

sistent with pure CO_2 are superimposed on the broader absorptions typical of CO₂ in H₂O (compare Fig. 5 to Fig. 2). Since the latter are visible over the entire temperature range, but the sharper peaks upon them broaden and diminish with warming, we assume this corresponds to the regions of pure CO₂ forming and then subliming away with rising temperature. Spectra of other CO₂ peaks and the $H_2O/CO_2 = 25$ mixture tell the same story. Blake et al. (1991) and Ehrenfreund et al. (1999) observed similar effects in the mid-IR spectra of CO₂-H₂O-CH₃OH ternary mixtures and attributed it to phase separation and ice 'segregation,' respectively. Our observations of the effects of warming CO₂ in H₂O and CH₃OH (see below) are consistent with those previous observations. The fact that the broader peaks assigned to CO2 in H2O remain to well over 100 K reminds us that CO₂ in H₂O will remain observable in the solid phase to much higher temperature than it would in the pure state (Sandford and Allamandola, 1990).

Our observations for a CH₃OH/CO₂ = 5 ice mixture are very similar to those described above for H₂O/CO₂ = 5. Our spectra are consistent with previously published mid-IR spectra of CO₂ in the presence of CH₃OH (Dartois et al., 1999; Ehrenfreund et al., 1999; Palumbo and Baratta, 2000). Although the 2–2.75 μ m (5000–3636 cm⁻¹) spectrum of CH₃OH is more complicated than that of H₂O, the CO₂ features seen in Fig. 6 are similar to those seen in Fig. 1. As before, the pair of CO₂ peaks near 2.70 and 2.79 μ m are present, and the putative 2 ν ₃ overtone of CO₂ is clearly visible at ~2.137 μ m (4680 cm⁻¹). The intensity of the 2.137 μ m (2340 cm⁻¹) peak relative to the fundamental at 4.27 μ m (2340 cm⁻¹), is similar to that seen for the H₂O/CO₂ = 5 mixture (see Table 1). As with H₂O/CO₂ mix-

Fig. 6. The 2.0–22 μ m (5000–450 cm⁻¹) IR spectrum of an CH₃OH/ CO₂ = 5 ice mixture. As in Figs. 1 and 3, the 2 ν ₃ overtone of CO₂ is clearly visible at ~2.14 μ m (4682 cm⁻¹), and the pair of CO₂ peaks at ~2.70 and 2.79 μ m are also present. The other absorptions between 2 and 3 μ m are caused by methanol.

tures the intensity of this ~2.13 µm peak of CO₂ in CH₃OH is sensitive to conditions (i.e., concentration, temperature); we have observed it to vary as much as a factor of two in CO₂–CH₃OH mixtures. As a result the areas reported for the 2.13 µm (4700 cm⁻¹) 'forbidden' $2\nu_3$ absorption should be should be regarded as more uncertain than the other CO₂ absorptions.

As above, the changes in the spectrum of the CH₃OH/ $CO_2 = 5$ ice with warming are consistent with ice 'segregation.' Fig. 7 shows the temperature dependence of the IR spectrum of a $CH_3OH/CO_2 = 5$ ice mixture in three regions: between 2.041–2.198 µm (4900–4550 cm⁻¹), 2.667– 2.817 μ m (3750–3550 cm⁻¹), and 4.167–4.386 μ m (2400– 2280 cm^{-1}). The 2.13 µm (4700 cm⁻¹) $2\nu_3$ overtone (at left) displays multiple components roughly matching those of the 4.27 μ m (2340 cm⁻¹) ν_3 fundamental (right). Similar spectra of the 4.27 μ m (2340 cm⁻¹) peak of CO₂ in an H₂O–CH₃OH mixture were published by Blake et al. (1991). The 2.7 and 2.78 μ m (3700 and 3600 cm⁻¹) absorptions with broad profiles at 15 K indicative of CO2 in CH3OH give way to the sharper peaks resembling pure CO₂ on warming. At 130 K the 2.7 and 2.78 μ m (3700 and 3600 cm⁻¹) absorptions look like those of pure CO_2 . It cannot be pure CO_2 , however, because this would have sublimed away in our vacuum system.

4. Discussion

We have shown that near-IR spectra of CO_2 in H_2O or CH_3OH at low temperature look very different than those pure CO_2 under the same conditions. First, absorptions of

Fig. 7. Temperature dependence of the IR spectrum of a CH₃OH/CO₂ = 5 ice mixture between 2.041–2.198 μ m (4900–4550 cm⁻¹), 2.667–2.817 μ m (3750–3550 cm⁻¹), and 4.167–4.386 μ m (2400–2280 cm⁻¹). The 2 ν_3 overtone (left) near 2.13 μ m (4700 cm⁻¹) displays multiple components roughly matching those of the ν_3 fundamental (right) near 4.27 μ m (2340 cm⁻¹). The combination modes (center) near 2.7 and 2.78 μ m (3700 and 3600 cm⁻¹) have broad profiles at 15 K that give way on warming to sharper peaks resembling those of pure CO₂. However, pure CO₂ would have sublimed by 130 K.

CO₂ in H₂O or CH₃OH are 3–5 times broader and are shifted to longer wavelength by 0.002–0.006 μ m (–5 and –10 cm⁻¹) than those of pure CO₂ under the same conditions. Second, and perhaps most significantly, CO₂ in H₂O (or CH₃OH) produces new absorptions that are simply not present (or greatly diminished) in the spectra of the pure materials.

In particular, our near-IR spectra of 1 and 10 µm thick $H_2O/CO_2 = 5$ and 25 ices show a fairly strong $(\sim 10^{-18} \text{ cm/molec})$ peak near 2.135 µm (4684 cm⁻¹) interpreted to be the $2\nu_3$ overtone of CO₂ that is very much weaker in near-IR spectra of our pure CO₂ frost (see Fig. 3) and absent from spectra of a thick CO₂ monocrystal grown in a closed cell (E. Quirico, private communication). A very weak peak near $\sim 2.128 \,\mu m \,(4700 \,\mathrm{cm}^{-1})$ was observed in the published spectrum of a thick sample of pure CO₂ (Quirico and Schmitt, 1997) and both they and we think this is the same feature. They observed that small feature to be >7000times weaker than the 2.70 μ m (3700 cm⁻¹) CO₂ peak, whereas these two are of comparable intensity in our spectra of H₂O–CO₂ mixtures (see Table 1). This indicates that the $CO_2 2\nu_3$ absorption is enhanced by a factor of $\sim 10^4$ in our H_2O-CO_2 mixtures, over that of pure CO_2 . This formally 'forbidden' absorption has also been reported as a weak feature in the spectra of CO₂ isolated in Ar (Sandford et al., 1991) and N₂ matrices (Quirico and Schmitt, 1997), where we estimate it is at least 1000 times less intense than in H₂O or CH₃OH. The fact that this forbidden transition is observed so strongly suggested that the symmetry of the CO₂ is broken by interactions with neighboring molecules-literally being bent by the water 'matrix' for example. However, were this the case then one might expect that the v_1 mode near 7.5 μ m (1340 cm⁻¹) might also be visible, but in our spectra it is not. We do not have a good explanation for why this is the case, but the behavior of the v_1 mode is complicated by its near coincidence with $2\nu_2$ (2 × 667 cm⁻¹ = 1334 cm⁻¹) and the concomitant Fermi resonance (Drago, 1992). It is

to be hoped that theoretical modeling will be amenable to solving this problem.

The intensification of the $2\nu_3$ peak may be a general feature of CO₂ interactions with molecules that can hydrogen bond, since it was also observed in H₂S–SO₂–CO₂ ice mixtures (Sandford et al., 1991). Formally 'forbidden' transitions in N₂ (Bernstein and Sandford, 1999) and O₂ (Ehrenfreund et al., 1992) have been observed in H₂O and at least that of N₂ is sensitive to the molecular environment. Similarly, we observe the relative intensity of the 2.135 µm (4684 cm⁻¹) peak to change depending on the conditions (i.e., concentration, temperature, etc.), consistent with it being the CO₂ $2\nu_3$ overtone.

Spectra of frosts vapor deposited at low temperature (such as we have shown here) can differ from those of thick ices made by the cooling of higher temperature materials in a closed cell. It may be that thin films have crystallographic defects that locally break the crystal symmetry making the $2\nu_3$ feature more intense in vapor deposited frosts than it would be in thicker samples annealed in a closed cell. In any case, the intensity of the band is clearly controlled by the abundance of band activator (here H₂O), so, it is a powerful indicator of an H₂O–CO₂ interaction (i.e., of CO₂–H₂O intimate mixing) over at least the five fold concentration range studied here.

Other features enhanced in spectra of our H₂O–CO₂ mixtures relative to those of either pure material include the 2.74 µm (3650 cm⁻¹) and 1.89 µm (~5300 cm⁻¹) absorptions of H₂O. The 2.74 µm (3650 cm⁻¹) feature is certainly not specific to CO₂, it is known to be caused by other guest molecules in H₂O (Rowland et al., 1991). The 1.89 µm (~5300 cm⁻¹) peak has appeared previously in published spectra of low temperature amorphous H₂O (Schmitt et al., 1998), and we think it an overtone combination of the aforementioned non-specific 2.74 µm (3650 cm⁻¹) feature with the strong ~6.3 µm (~1600 cm⁻¹) bending mode of H₂O. This 1.89 µm peak may be a useful measure of the phase of the ice, since it diminishes on warming (see Fig. 3 in Schmitt et al., 1998).

During warming of $H_2O/CO_2 = 5$ ices we observe at ~ 2.70 and $\sim 2.79 \ \mu m$ (3700 and 3590 cm⁻¹) the broad, shifted, peaks of CO_2 in H_2O and also sharper peaks that resemble those of pure CO_2 (see Fig. 5). The results for $CH_3OH/CO_2 = 5$ ices are very similar (see Fig. 7). Although the absorptions seen in Fig. 7 between 2.67 and $2.82 \ \mu m \ (3750-3550 \ cm^{-1})$ look like pure CO₂, they cannot be, both because the temperature is above that at which pure CO₂ would sublime, and also because the corresponding 2.135 μ m (4684 cm⁻¹) peak is observed although it is absent from spectra of pure CO_2 . Thus, if this CO_2 is 'pure' it is still in small domains, i.e., not a layer of pure CO₂ on top of a layer of pure H₂O. These observations are consistent with previous studies of the temperature dependence of the 4.27 μ m (2340 cm⁻¹) CO₂ peak, TEM micrographs (Blake et al., 1991) and the $\sim 15 \ \mu m \ (\sim 650 \ cm^{-1})$ CO₂ peak (Ehrenfreund et al., 1998) in ternary CO₂-H₂O-CH₃OH mixtures. This is reminder that CO₂ can be trapped in H₂O ice at temperatures well above that at which it would normally sublime, so small amounts of solid CO₂ may be observed as long as H2O ice is present, in our vacuum system up to almost 200 K.

The case of CO₂ in H₂O and CH₃OH exemplifies what is probably a general rule: intermolecular interactions with H₂O will cause significant changes in IR absorptions, so combining spectra of pure materials will not be adequate to reproduce spectra of mixtures. The results reported here have obvious implications for the interpretation of IR spectra of ices in environments where CO₂ might come into contact with H₂O, such as Mars polar caps and outer Solar System objects. Even in environments where one might expect CO₂ to be separate from H₂O because it is more volatile, CO₂ could be formed trapped in solid H₂O by the oxidation of carbon compounds. Since the CO₂ $(2\nu_3)$ overtone near 2.134 μ m (4685 cm⁻¹) is essentially not present in pure CO₂ but is prominent in mixtures with H₂O, near-IR spectra could be used to determine if, in a Mars polar cap or on the surface of an icy body in the outer Solar System, CO₂ is mixed intimately with another molecule or separate. Since the absorptions of CO₂ in H₂O are broad and thus have lower spectral contrast, they may have been overlooked or assigned to other causes in the past. For example, there is a peak near 2.13 µm on the short wavelength shoulder of the N₂ absorption in the spectrum of Triton presented in Fig. 2 from Quirico et al. (1999) that could be the $(2\nu_3)$ overtone of CO₂ in H₂O. The three shorter wavelength CO₂ absorptions (seen in Fig. 4) would be even smaller and thus lost in the noise. However, there is also a nearby shoulder in the lab spectrum of pure N_2 so the presence of this shoulder is merely consistent with some CO₂ in H₂O. It is to be hoped that future observations of Triton, Mars, and other objects where solid H₂O and CO₂ are present will allow for the accurate determination of whether there may be some CO₂ intimately mixed with H₂O.

5. Conclusions

- We have presented the first near-IR spectra of H₂O/CO₂ and CH₃OH/CO₂ mixtures vapor deposited at 15 K and warmed to 150 K.
- 2. The spectrum of CO_2 in H_2O is not the same as the sum of the spectra of the pure components. In particular, the 2.135 µm (4684 cm⁻¹) absorption of CO_2 is thousands of times stronger in the mixtures than in pure CO_2 .
- 3. The presence of this absorption in the spectra of Solar System objects will be a good indicator of whether the CO₂ is intimately mixed with H₂O.

Acknowledgments

This work was supported by NASA's Planetary Geology and Geophysics Program (NRA-02-OSS-01-PGG). The authors thank Dr. L.J. Allamandola for helpfull discussions, the expert technical and experimental support of Robert Walker, and Drs. Quirico and Gerakines for helpful comments that improved the manuscript.

References

- Bernstein, M.P., Sandford, S.A., 1999. Variations in the strength of the infrared forbidden 2328.2 cm⁻¹ fundamental of solid N₂ in binary mixtures. Spectrochim. Acta A 55, 2455–2466.
- Bibring, J.-P., Langevin, Y., Poulet, F., Gendrin, A., Gondet, B., Berthé, M., Soufflot, A., Drossart, P., Combes, M., Bellucci, G., Moroz, V., Mangold, N., Schmitt, B., 2004. OMEGA Team, Perennial water ice identified in the south polar cap of Mars. Nature 428, 627–630.
- Bini, R., Salvi, P.R., Schettino, V., Jodl, H.-J., 1991. Triphonons in crystal CO₂. Phys. Lett. A 157 (4–5), 273–282.
- Blake, D., Allamandola, L.J., Sandford, S.A., Hudgins, D.M., Freund, F., 1991. Clathrate hydrate formation in amorphous cometary ice analogs in Vacuo. Science 254, 548–551.
- Buratti, B.J., 28 colleagues, 2005. Cassini VIMS observations of Iapetus: Detection of CO₂. Astrophys. J. 622 (2), L149–L152.
- Clark, R.N., 25 colleagues, 2005. Compositional mapping of Saturn's moon Phoebe with Imaging Spectroscopy. Nature. In press.
- Cruikshank, D.P., Roush, T.L., Owen, T.C., Geballe, T.R., de Bergh, C., Schmitt, B., Brown, R.H., Bartholomew, M.J., 1993. Ices on the surface of Triton. Science 261, 742–745.
- Cruikshank, D.P., 14 colleagues, 1998. The composition of Centaur 5145 Pholus. Icarus 135, 389–407.
- Dartois, E., Demyk, K., D'Hendecourt, L., Ehrenfreund, P., 1999. Carbon dioxide–methanol intermolecular complexes in interstellar grain mantles. Astron. Astrophys. 351, 1066–1074.
- Drago, R.S., 1992. Physical Methods for Chemists. Harcourt Brace Jovanovich, Fort Worth, TX.
- Ehrenfreund, P., Breukers, R., D'Hendecourt, L., Greenberg, J.M., 1992. On the possibility of detecting solid O₂ in interstellar grain mantles. Astron. Astrophys. 260, 431–436.
- Ehrenfreund, P., Gerakines, P.A., Schutte, W.A., van Hemert, M.C., van Dishoeck, E.F., 1996. Infrared properties of isolated water ice. Astron. Astrophys. 312, 263–274.
- Ehrenfreund, P., Dartois, E., Demyk, E., D'Hendecourt, L., 1998. Ice segregation toward massive protostars. Astron. Astrophys. 339, L17–L20.
- Ehrenfreund, P., Kerkhof, O., Schutte, W.A., Boogert, A.C.A., Gerakines, P.A., Dartois, E., D'Hendecourt, L., Tielens, A.G.G.M., van Dishoeck,

E.F., Whittet, D.C.B., 1999. Laboratory studies of thermally processed $H_2O-CH_3OH-CO_2$ ice mixtures and their astrophysical implications. Astron. Astrophys. 350, 240–253.

- Gerakines, P.A., Bray, J.J., Davis, A., Richey, C.R., 2005. The strengths of near-infrared absorption features relevant to interstellar and planetary ices. Astrophys. J. 620, 1140–1150.
- Grundy, W.M., Buie, M.W., 2001. Distribution and evolution of CO₂, N₂, and CO ices on Pluto's surface: 1995 to 1998. Icarus 153, 248–263.
- Grundy, W.M., Young, L.A., Young, E.F., 2003. Discovery of CO₂ ice and leading–trailing spectral asymmetry on the uranian satellite Ariel. Icarus 162, 222–229.
- Hansen, G.B., 1997. The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 μm. J. Geophys. Res. 102, 21569–21588.
- Hibbits, C.A., McCord, T.B., Hansen, G.B., 2000. Distributions of CO₂ and SO₂ on the surface of Callisto. J. Geophys. Res. 105, 22541–22557.
- Hibbits, C.A., Pappalardo, R.T., Hansen, G.B., McCord, T.B., 2003. Carbon dioxide on Ganymede. J. Geophys. Res. 108 (E5), 2-1–2-22.
- Hudgins, D.M., Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., 1994. Mid- and Far-Infrared Spectroscopy of Ices: Optical Constants and Integrated Absorbances. The AAS CD-ROM Series, vol. 1. Expanded version of the tables in Astrophys. J. Suppl. Ser. 86, 713– 870.
- Jenniskens, P., Blake, D.F., 1994. Structural transitions in amorphous water ice and astrophysical implications. Science 265, 753–756.
- Jenniskens, P., Blake, D.F., Wilson, M.A., Pohorille, A., 1995. High-density amorphous ice, the frost on interstellar grains. Astrophys. J. 455, 389– 401.
- McCord, T.B., 11 colleagues, 1997. Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278, 271–275.
- McCord, T.B., 14 colleagues, 1998. Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo Near-

Infrared Mapping Spectrometer investigation. J. Geophys. Res. 103, 8603–8626.

- Mumma, M.J., Weissman, P.R., Stern, S.A., 1993. Comets and the origin of the Solar System: Reading the Rosetta stone. In: Levy, E., Lunine, J. (Eds.), Protostars and Planets III. Univ. of Arizona Press, Tucson, pp. 1177–1252.
- Palumbo, M.E., Baratta, G.A., 2000. Infrared spectra of CO₂ in H₂O:CH₃OH:CO₂ icy mixtures. Astron. Astrophys. 361, 298–302.
- Quirico, E., Schmitt, B., 1997. Near-infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N₂ and as pure ices: Implications for Triton and Pluto. Icarus 127, 354–378.
- Quirico, E., Doute, S., Schmitt, B., de Bergh, C., Cruikshank, D.P., Owen, T.C., Geballe, T.R., Roush, T.L., 1999. Composition, physical state, and distribution of ices at the surface of Triton. Icarus 139, 159–178.
- Rowland, B., Fisher, M., Devlin, P.J., 1991. Probing icy surfaces with the dangling OH mode absorption: Large ice clusters and microporous amorphous ice. J. Chem. Phys. 95, 1378–1384.
- Roush, T.L., 2001. Physical state of ices in the outer Solar System. J. Geophys. Res. 106 (E12), 33315–33324.
- Sandford, S.A., Allamandola, L.J., 1990. The physical and infrared spectral properties of CO₂ in astrophysical ice analogs. Astrophys. J. 355, 357– 372.
- Sandford, S.A., Salama, F., Allamandola, L.J., Trafton, L.M., Lester, D.F., Ramseyer, T.F., 1991. Laboratory studies of the newly discovered infrared band at 47052 cm⁻¹ (2.1253 μm) in the spectrum of Io: The tentative identification of CO₂. Icarus 91, 125–144.
- Schmitt, B., de Bergh, C., Festou, M., 1998. Solar System Ices. Astrophysics and Space Science Library (ASSL) Series, vol. 227. Kluwer Academic, Dordrecht, p. 826.
- Stansberry, J.A., 2004. Triton, Pluto, and beyond. In: Dasch, F. (Ed.), Icy Worlds of the Solar System. Cambridge Univ. Press, Cambridge, UK, pp. 139–167.